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Parameter Determination for Complex 
Number-Theoretic Transforms Using 

Cyclotomic Polynomials 

By R. Creutzburg and M. Tasche 

Abstract. Some new results for finding all convenient moduli m for a complex number- 
theoretic transform with given transform length n and given primitive nth root of unity 
modulo m are presented. The main result is based on the prime factorization for values 
of cyclotomic polynomials in the ring of Gaussian integers. 

1. Introduction. With the rapid advances in large-scale integration, a growing 
number of digital signal processing applications becomes attractive. The number- 
theoretic transform (NTT) was introduced as a generalization of the discrete Fourier 
transform (DFT) over residue class rings of integers in order to perform fast cyclic 
convolutions without roundoff errors [7, pp. 158-167], [10, pp. 211-216], [3]. The 
main drawback of the NTT is the rigid relationship between obtainable transform 
length and possible computer word length. In a recent paper [4], the authors have 
discussed this important problem of parameter determination for NTT's in the ring 
of integers by studying cyclotomic polynomials. 

The advantage of the later introduced (see [7, pp. 210-216], [9], [10, pp. 236-239], 
[5]) complex number-theoretic transforms (CNT) over the corresponding rational 
transforms is that the transform length is larger for the same modulus. In this note, 
we consider the problem of parameter determination for CNT, and we extend the 
results of [4] to the ring of Gaussian integers. 

2. Primitive Roots of Unity Modulo m. By Z and Z[i] we denote the ring 
of integers and the ring of Gaussian integers, respectively. We denote the conjugate 
complex number of z E Z[i] by z. The norm N(z) of z = x + yi E Z[i] is defined as 
N(z) = x2 + y2. If N(z) is odd, then we say that z E Z[i] is odd. Note that Z[i] is 
a Euclidean ring (see, for instance, [6, pp. 178-187]). 

In Z[i] there are the following primes: The number 1 + i and its associates; the 
rational primes _ 3 mod 4 and their associates; the Gaussian integers whose norms 
are rational primes _ 1 mod 4 (see [6, pp. 218-219]). 

Let m E Z[i], N(m) > 5, be an odd Gaussian integer which possesses the complex 
prime factorization 

(1) m P ilpl l . Ipaecp1 ... ct 
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where -y E {0, 1,2,3}, cj > 1, /3k > 1, pj are distinct rational primes _ 3mod4 
and Ck E Z[i] are distinct primes whose norms are rational primes 1 mod 4 (j = 

1, ... , s; k = 1, . . . , t). Further let n > 2. A number e E Z7[i], N(e) > 1, is called a 
primitive nth root of unity modulo m [3], if 

en _ lmodm, 

GCD(ek _1, m) = 1, k n 1, ..,n1. 

By definition, e = 1 is a primitive first root of unity modulo m. The condition 

(2) nlGCD(p ?-1,N(ck)-1; j=1,...,s; k = 1,...,t) 

is necessary and sufficient for the existence of primitive nth roots of unity modulo 
m in Z[i] (see [10, p. 237], [3]). 

Note that for n > 2 and e E Z[i], N(e) > 2, a Gaussian integer m, N(m) > 5, 
with the properties 

mIen -1, 

GCD(e k _11M) = 1, k =1...,n- 1, 

is called a primitive divisor of en - 1. Obviously, these conditions are equivalent to 

mien - 1, 

GCD(N(ek - 1), N(m)) = 1, k = 1,. .., n -1. 

The following theorem gives criteria for a Gaussian integer to be a primitive nth 
root of unity modulo m. We denote the nth cyclotomic polynomial by 4n. 

THEOREM 1 ([3]). Let m E Z[i], N(m) > 5, be an odd Gaussian integer. 
Further let n > 4. An element e E Z[i], N(e) > 2, is a primitive nth root of unity 
modulo m if and only if one of the following conditions holds: 

(1) 1?n (e)-0 mod m, GCD(n, m) = 1; 
(2) en lmodm, GCD(ed - 1,m) = 1 

for every divisor d > 1 of n such that n/d is a rational prime; 
(3) en lmodm, GCD(N(ed - 1),N(m)) = 1 

for every divisor d > 1 of n such that n/d is a rational prime; 
(4) m is a primitive divisor of en - 1. 

The concept of the primitive nth root of unity modulo m is essential in the follow- 
ing context. Let x = [xo, . . , xnli and y = [yo, .. ., Yn-i] be two n-dimensional 
vectors with Gaussian integers as components. Note that the equality of such 
vectors x and y is defined by Xk ykmodm, k = 0,... ,n - 1. The complex 
number-theoretic transform (CNT) of length n with e E Z[i] as a primitive nth 
root of unity modulo m, and its inverse, are defined to be the following mappings 
between n-dimensional vectors x = [lxo ... , xn-1] and X = [Xo, ... * Xn,1]: 

n-1 

X_ EZxkejk modm, j = 0, .. ., n-1, 
k=O 

n-I 

xkrn' EXje-ikmodm, k = 0,...,n-1, 
j=0 
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where n'n_ lmodm (see [7, p. 211], [10, p. 238], [3]). Note that there exists such 
an integer n' because of GCD(n, m) = 1 (see Theorem 1, (1)). The CNT possesses 
properties resembling those of the DFT, particularly the cyclic convolution property 
([7, pp. 211-212], [3]). 

For given transform length n and given e E Z[i], one has to choose the modulus m 
by Theorem 1 as a divisor of In (e) which is relatively prime to n, or as a primitive 
divisor of el - 1. In practical applications, the following lemmas are helpful. 

LEMMA 1. Let n,r E Z, n > 2, 1 < r < n. Assume that m E Z[i], N(m) > 5, 
is an odd Gaussian integer. 

(1) Let GCD(r, n) = 1. If e E Z[i] is a primitive nth root of unity modulo m, 
then et is a primitive nth root of unity modulo m. 

(2) In the case rln, the element e E Z[i] is a primitive (rn)th root of unity modulo 
m if and only if et is a primitive nth root of unity modulo m. 

Proof. (1) By 
n 

I (x)> JJ (x - e>) modm 
v=l 

GCD(n,v)= 1 

(see [2]), we obtain 

4?n (et) _ O mod m. 

Since e is a primitive nth root of unity modulo m, it follows from Theorem 1, (1) 
that GCD(m, n) = 1. Using Theorem 1,(1) again, the element et is a primitive nth 
root of unity modulo m. 

(2) In the case rln, we have 

4rn (X) = 4tn (xt) . 

Further, GCD(n, m) = 1 is equivalent to GCD(rn, m) = 1. Applying Theorem 
1,(1), we obtain the second assertion of Lemma 1. 0 

LEMMA 2. Let n,r E Z, n > 2, r > 2, and let m E Z[i], N(m) > 5, be an odd 
Gaussian integer. Let e E Z[i], N(e) > 2, be a primitive nth root of unity modulo m. 
Further, let f E Z[i] be a primitive rth root of unity modulo m. If GCD(n, r) = 1, 
then ef is a primitive (nr)th root of unity modulo m. 

Proof. Under the above assumptions, the following congruence is valid (see [2]), 

r-1 

4n(X) Ji 4n(fpx) modm 
p=1 

GCD(p,r)= 1 

Hence it follows that 
r-1 

tnr(ef) JI bn(fP+ e) mod m. 
p=1 

GCD(p,r)=l 

For p = r - 1, the above product contains the factor 

4?n (fTe) _?n (e) Omod m, 
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so that 

4n,(ef) _ Omodm. 

By our assumptions, and by Theorem 1,(1), we have GCD(m, n) = GCD(m, r) = 1 
and hence GCD(m, nr) = 1. Applying Theorem 1,(1) again, we obtain that ef is a 
primitive (nr)th root of unity modulo m. 0 

Remark. If the given odd Gaussian integer m possesses the prime factorization 
(1), then we have 

41GCD(pi 1)N(Ck) - 1; j 1 =1...,is; k = 1,...t) 

and hence we can choose f = -1 or f = i for an odd integer n. 

LEMMA 3. Let m E Z[i], N(m) > 5, be an odd Gaussian integer, and let e E Z[i], 
N(e) > 2. 

(1) If n > 2 is an odd integer, then the following conditions are equivalent: 
(i) ?e and ?ie are primitive (8n)th roots of unity modulo m. 
(ii) ?e2 are primitive (4n)th roots of unity modulo m. 
(iii) e4 is a primitive (2n)th root of unity modulo m. 
(iv) -e4 is a primitive nth root of unity modulo m. 

(2) If n > 2 is an even integer, then the following conditions are equivalent: 
(v) ?e and ?ie are primitive (8n)th roots of unity modulo m. 
(vi) ?e2 and ?ie2 are primitive (4n)th roots of unity modulo m. 
(vii) ?e4 are primitive (2n)th roots of unity modulo m. 
(viii) e8 is a primitive nth root of unity modulo m. 

Proof. The modulus m E Z[i] is always odd. Therefore, GCD(n, m) = 1 if and 
only if GCD(2n, m) = 1. 

(1) Let n > 2 be odd. By 

t8n(?X) = 48n(?ix) = (4n(?X ) = Ot2n(X4) = (n(_X4 

the first part of the lemma follows immediately from Theorem 1,(1). 
(2) Let n > 2 be even. By 

D8n (?X) = ?8n (?ix) = 44n(?x2) = 4?4n (?iX2) 

= (D2n(?X 4) = bn(X8), 

we obtain the second part of the lemma by Theorem 1,(1). 0 

Remark. Lemma 3 improves recent results of [5], [7, pp. 211-214] and [2]. Only 
the special cases e = (1 + i)k and e = 2k(1 + i), k > 1, were considered in the 
literature. 

The following Lemma 4 gives a detailed overview in the case e = 1 + i of Lemma 
3. Such a case is important for practical applications, because the arithmetic in a 
digital computer is easy to perform for primitive nth roots of unity modulo m with 
a simple binary representation. 

LEMMA 4. Let m E Z[i], N(m) > 5, be an odd Gaussian integer. 
(1) If n > 2 is odd, then the following conditions are equivalent: 

(i) ?1 ? i are primitive (8n) th roots of unity modulo m. 
(ii) ?2i are primitive (4n)th roots of unity modulo m. 
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(iii) -4 is a primitive (2n)th root of unity modulo m. 
(iv) 4 is a primitive nth root of unity modulo m. 

(2) If n > 2 is even, then the following conditions are equivalent: 
(v) ?1 ? i are primitive (8n) th roots of unity modulo m. 
(vi) ?2i and ?2 are primitive (4n)th roots of unity modulo m. 
(vii) ?4 are primitive (2n)th roots of unity modulo m. 
(viii) 16 is a primitive nth root of unity modulo m. 

Remark. For e E Z[i], the value 4 (e) of the cyclotomic polynomial is a Gaussian 
integer, in general. But in some cases we have 1?%(e) E 7, for example, 

44n(l + i) = 42n&-4) E Z, n > 2. 

Then Theorem 1,(1) implies that only divisors of 42n(-4) which are relatively 
prime to 2n are possible moduli m, such that e = 1 + i is a primitive (8n)th root 
of unity modulo m. In this case, the possible moduli can be obtained from the 
rational prime factorization of 4?2n(-4). Another way is to determine the primitive 
divisors of (1 + i)8n - 1, where 

(1 + i)8n -1 = (2i)4n - 1 =24n _ 1. 

The rational prime factorizations of bn ? 1 for b = 2,3,5,6,7, 10, 11, 12 up to high 
powers of n are tabulated in [1]. 

Table 1 lists some important special cases for practical applications in digital 
signal processing. We present explicitly all possible rational moduli for soiie CNT's 
with mixed-radix length and e = 1 + i. These results are new (comlpare with 

[7, p. 214]) and are obtained by application of Theorem 1,(1) and ratiolial prime 
factorizations of 2n ? 1 (see [1, pp. ix-xviij). 

TABLE 1 

Parameters for various CNT's with e = 1 + i as primitive nth root of unity modulo m, where the 
length n is of mixed-radix form with 8in, and where the rational modulus m > 1 is an arbitrary 
divisor of 4n(1 + i) = 4n/4 (-4) with GCD(m, n) = 1. Prime divisors of Dn/4 (-4) which divide 
n are indicated by an asterisk. 

Transform length n Rational prime factorization of "n/4 (-4) 

48=24 x3 241 
56=23 x7 43x 127 
72 = 23x32 3* x 19 x 73 
96=25 x3 97x673 
120 = 23 x 3 x 5 151 x 331 
144 = 24 x 32 433 x 38 737 
168=23 x3x7 7* x337x5 419 
200 = 23 x 52 251 x 601 x 1 801 x 4 051 
216 = 23 x 33 3* x 87 211 x 262 657 
280 = 23 x 5 x 7 71 x 281 x 86 171 x 122 921 
360 = 23 x 32 x 5 631 x 23 311 x 18 837 001 
400 = 24 x 52 401 x 340 801 x 2 787 601 x 3 173 389 601 
504 = 23 x 32 x 7 92 737 x 649 657 x 77 158 673 929 

It is sometimes desirable to compute cyclic convolutions with improved dynamic 
range. In this case, the same cyclic convolution can be computed modulo several 

relatively prime integers mi1, ... , mrI, and the final result can be obtained modulo 
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(mi ... mr) via the Chinese remainder theorem. For this application, the availabil- 
ity of CNT's having the same length and defined modulo relatively prime integers 
is particularly interesting. For instance, a 200-dimensional cyclic convolution could 
be computed via the complex pseudo Mersenne number transform (with e = 1 + i) 
modulo (225 - 1)/31 = 601 x 1 801 and via the complex pseudo Fermat number 
transform (with e = 1 + i) modulo (225 + 1)/33 = 251 x 4 051 (see Table 1). 

3. Construction of Convenient Moduli. From the numerical point of view, 
the following three essential conditions on CNT's are required: 

- The transform length n has to be large enough and highly factorizable in 
order to implement fast algorithms. 

- The primitive nth root e of unity modulo m should have a simple binary 
representation, so that the arithmetic modulo m is easy to perform. 

- The modulus m has to be large enough to avoid overflow, but on the 
other hand small enough so that the machine word length is not exceeded. 
Furthermore, m should have a simple binary representation. 

Therefore, we determine all possible moduli m for given length n > 4 and given 
e E Z[i], N(e) > 2, such that e is a primitive nth root of unity modulo m. We solve 
this question by studying cyclotomic polynomials. 

Let e E Z[i], N(e) > 2, be given. Further, let c E Z[i] be an odd prime. If e 
belongs to the exponent k modulo c, then we write for short ord,(e) = k. 

The following theorem on the prime factorization of I?l(e) for e E Z[ij is a 
generalization of a known result of Kronecker (see [8, pp. 164-168]) and is proved 
in [12]. We see that the prime divisors of 'Il(e) can be characterized by certain 
congruence conditions. 

THEOREM 2 ([121). Let n > 4, and let e E Z[i], N(e) > 2, be given. Further, 
let p be the greatest rational prime factor of n with ptIn and pt+' t n, t > 1. The 
number q E Z[i] is defined as follows: 

(2 if n = 2t, t > 2, and e is odd, 
p if p 3mod4 and ordp(e) = n/pt, 

q = if p 1 mod 4, N(c) = p and ordc(e) = n/pt 54 ordc(e), 
p if p 1 mod4, N(c) = p and ordc(e) = n/pt = ordc(e), 

1 1 otherwise. 

Then the value 'J?(e) of the nth cyclotomic polynomial 4?? possesses a prime fac- 
torization of the following type 

(3) 'I (e) = ihq Jj zs(z) 

where h E {0, 1, 2,3} and H1 is defined as the product of all those primes z E Z[i], 
N(z) > 2, with ordz(e) = n. Further, s(z) denotes that positive integer s with 
zslen - 1 and z1+1 t el - 1. Except for 

(4) (n, e) = (5, -1 ? i), (6, 1 ? i), (6,2), (10,1 ? i), 

there exists at least one prime z E Z[i], N(z) > 2, with ordz(e) = n. 

From the above result and Theorem 1, the following construction of suitable 
moduli is obtained. 
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THEOREM 3. Let n > 4, and let e E Z[i], N(e) > 2, be given, where the cases 
(4) are omitted. Under these assumptions, e is a primitive nth root of unity modulo 
m if and only if m E Z[i], N(m) > 1, is a divisor of 4>n(e)/q. 

Remark. By Theorem 1,(4) and Theorem 3, it follows that under the above 
assumptions, m is a primitive divisor of en - 1 if and only if m E Z[i], N(m) > 1, 
is a divisor of 4'n(e)/q. 

Proof of Theorem 3. (1) Let m E Z[i], N(m) > 1, be a divisor of 4eI,(e)/q. By 
(3), it follows that m is odd and hence N(m) > 5, and that 4> (e) O_ modm and 
GCD(m, n) = 1. Using Theorem 1,(1), e is a primitive nth root of unity modulo 
m. 

(2) If e is a primitive nth root of unity modulo m, then mj n(e) and GCD(m, n) = 

1 by Theorem 1,(1). Then Theorem 2 implies m1I4(e)/q. 1O 
If we compare Theorem 1, (1) and Theorem 3, then we see that Theorem 3 is 

more precise than Theorem 1, (1). Note that there exists only a finite number of 
moduli m for given transform length n > 4 and given Gaussian integer e, N(e) > 2, 
such that e is a primitive nth root of unity modulo m. Further, we remark that m 
is always an odd Gaussian integer with N(m) > 5. Many interesting results can be 
obtained as simple corollaries of Theorem 3. 

COROLLARY 1 . Let e E Z[i], N(e) > 2, and let n -- 2d+1, d > 1. Further, let 

q 2 if e is odd, 
1 otherwise. 

Then e is a primitive nth root of unity modulo m if and only if m E Z[i], N(m) ? 5, 
is a divisor of 4>n(e)/q, where 

4In(X) = X2 + 1. 

Examples. In the case e = 2i and n = 2d+1, d > 1, we have q = 1. Then e is a 
primitive nth root of unity modulo m if and only if m E Z[i], N(m) > 5, is a divisor 
of the Fermat number 

bn (2i) = 22 + 1. 

In the case e = 1 + i and n = 2d+2, d > 1, we obtain q = 1. Then e is a primitive 

nth root of unity modulo m if and only if m E Z[i], N(m) > 5, is a divisor of the 
Fermat number 

b (1 + i) = 22d + 1. 

COROLLARY 2. Let e E Z[i], N(e) > 2, and let n = 2d+lpt, d > 1, t > 1, where 
p > 2 is a rational prime. In the case p _ 3mod4, we set 

q=p if ordp (e) = 2 

1 otherwise. 

In the casep_ lmod4 with a2+b2 =p, a,b EZ, we setc=a+bi and 

(c if ord,(e) = 2d+1 $ orde(e), 
q= < p if ord,(e) = 2d+1 = orde(e), 

1 otherwise. 
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Under these assumptions, e is a primitive nth root of unity modulo m if and only 
if m E Z[i], N(m) > 5, is a divisor of (%(e)/q, where 

'1n(X) = (X-11 + 1)(xn/(2P) + 1)-1. 

Examples. In the case e = 2i and n = 4p, where p > 3 is a rational prime, we 
obtain q = 1. Then e is a primitive nth root of unity modulo m if and only if 
m E Z[i], N(m) > 5, is a divisor of 

dn (2i) = 
2 

(2P - 1). 

Note that the corresponding CNT's are called complex pseudo Fermat number trans- 
form and complex pseudo Mersenne number transform, respectively [7, pp. 210-216], 

[9], [10, p. 238]. 
In the case e = 2i and n = 4 x 31, t > 1, we have q = 3. Then e is a primitive 

nth root of unity modulo m if and only if m E Z[i], N(m) > 5, is a divisor of 

In(2i)/3 = 223t1 - 23t1 + 1 (223t-1 3t-1 + 

In the case e = 1 + i and n = 8p, where p > 3 is a rational prime, we obtain 
q = 1. Then e is a primitive nth root of unity modulo m if and only if m E Z[i], 
N(m) > 5, is a divisor of 

2P + 1 
4tn(l +i) = (2P_-1). 

Note that the corresponding CNT's are called complex pseudo Fermat number 
transform and complex pseudo Mersenne number transform, respectively [7, pp. 
210-216], [9], [10, p. 238]. 

In the case e = 1 +i and n = 8 x 3', t > 1, we get q = 3. Then e is a primitive 
nth root of unity modulo m if and only if m E Z[i], N(m) > 5, is a divisor of 

22 3t-1 - 23t-1 + 1 223t1 + t2 1 + 
3 

COROLLARY 3. Let Pi and p be rational primes with 2 < Pi < p, and let 
n = 2d+ip pt d > O, s > 1, t > 1. Let e E Z[i], N(e) > 2. In the case p-3mod4, 
we set 

q Jp if ordp(e) =n/pt, 
1 otherwise. 

In the case p lmod4 with a2+b2 =p, a,b E Z, we set c = a+bi and 

f c if ord,(e) = n/pt $ ordu(e), 
p if ord,(e) = n/pt = ordu(e), 
1 otherwise. 

Under these assumptions, e is a primitive nth root of unity modulo m if and only 
if m E Z[i], N(m) > 5, is a divisor of n(e)/q, where 

'bn(X) = (Xn/2 + 1)(xn/(2P1P) + 1)(Xn/(2P1) + 1)-l(xn/(2p) + 1)-1. 

The advantage of the CNT over the corresponding rational transform is that the 
transform length is larger for the same modulus (see Table 2). 
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TABLE 2 

Parameters e, n and m for CNT's, where m E Z[il, N(m) > 5, is an arbitrary divisor of 4cn(e)/q, 
such that e is a primitive nth root of unity modulo m. Here the integer q is explained in Theo- 
rem 2. 

e n q 1 :n(e) 

2 2d+1 1 22d + 1 
d>1 - 

2i 2d+1 1 22d + 1 
d> 2 

1 + i 2d+2 1 22d + 1 
d > 2 --_ _ __ 

2 3t 1 (23t - 1)(23t-1 - j)- 
t> 1 

2i 4 x 3t 3 (23t -1)(23t + - 1)(23t-1 + 1)-' 

1 + i 8 x 3t 3 (23t - 1)(23t + 1)(23t-1 - 1)-l(23t-1 + 1)- 
t > 1 _ _ _ _ _ _ _ _ _ _ _ _ _ 

2 pt 1 (2pt - 1)(2Pt- 1) 
p prime, t > 1 

2i 4pt 1 (2P' - 1)(Vt + 1)(2Pt-_ 1) -1(2pt1 + 1)'- 
p> 3 prime, t > 1 

1 + i 8pt 1 (2P_ 1)(2Pt + 1)(2Pt-l 1) l(2Pt-1 + 1)- 
p > 3 prime, t > 1 

2 2d+1 x 3t 1 (22d3t + 1)(22d3t-1 + 1)-i 
d ? 2, t > 1 

2i 2d+1 x 3t 1 (22d3t + 1)(22d3 + 1)-' 
d > 2, t > 1 

1 + i 2d+2 x 3t 1 (22d3t + 1)(22d3t + 1)- 
dd> 2, t>1 

4. Connection Between Complex and Rational Moduli. Theorem 3 
yields the result that in general the suitable moduli m are Gaussian integers. How- 
ever, for practical applications usually rational integers (instead of Gaussian in- 
tegers) are more convenient as moduli of CNT's. Therefore we consider now a 
complex modulus m = s + ti E Z[i] with st $ 0 and GCD(s, t) = 1, and we ask 
which properties does a primitive nth root e E Z[i] of unity modulo m possess. 

LEMMA 5. Let m = s + ti E Z[i] with st 0 0 and GCD(s, t) = 1 be given. Then 
we have 

(5) Z[i]/mZ[i] Z/N(m)Z 

with the correspondence for arbitrary x + yi E Z[i] 

(x + yi) + mZ[i] - (x + (tA - sp)y) + N(m)Z, 

where A, , E Z are determined by sA + tu = 1. 
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Proof. (1) We define a mapping of the ring Z into the residue class ring Z[i]/mZ[i] 
by 

(6) x-x+mx [i] 

for arbitrary x E Z. From the properties of the ideal mZ[i], it follows that 

x+w - (x+w) +m7[i], 

x w -(x. w) + mZ[i] 

for all x,w E Z. 
(2) Now we show that an arbitrary residue class (x + yi) + mZ[i], x, y E Z, 

of Z[i]/mZ[i] can be represented in the form w + mZ[i] with some w E Z. Since 
GCD(s,t) = 1, there exist A,,u E Z with sA + t, = 1. Then by m(u + Ai)= 
(s1 - tA) + i, it follows that 

(x + yi) + mZ[i] = (x + (tA - s,)y) + mZ[i]. 
Consequently, a homomorphism of Z onto Z[i]/mZ[i] is defined by (6). 

(3) Let kZ, k E Z, be the kernel of this homomorphism (6). Obviously, we have 
kZ = Z n mZ[i]. Since mlk and rizlk, we can choose k = mmh = N(m). Using the 
homomorphism theorem for rings, we obtain the isomorphism (5). O 

By Lemma 5, we obtain immediately the following result on the connection 
between complex and rational moduli. 

THEOREM 4. Let m = s + ti E Z[i] with st 5 0 and GCD(s, t) = 1 be given. 
Let A, M E Z be determined by sA + ty = 1. 

The Gaussian integer e = a + bi is a primitive nth root of unity modulo m if 
and only if the rational integer e' = a + (tA - sy)b is a primitive nth root of unity 
modulo N(m). 

Example. By 

D5(2i) = ((2i)5 - 1)/(2i - 1) = (2 + i)(4 - 5i) 

and GCD(4 - 5i, 5) = 1, we conclude from Theorem 1,(1) or Theorem 3 that e = 2i 
is a primitive 5th root of unity modulo m = 4- 5i. Then we have A = M = -1. By 
Lemma 5, we obtain the isomorphism 

Z[i]/(4 - 5i)Z[i] - Z/41 7/, 

such that especially 
2i + (4 - 5i)Z[i] - 18 + 41 Z. 

Hence, e' = 18 is a primitive 5th root of unity modulo 41. In order to perform a 
simple binary arithmetic for an NTT with e' = 18 as primitive 5th root of unity 
modulo 41, we can set e' = 2j with j-9mod41 and j2 =_ -1 mod 41. 

5. Primitive Roots of Unity Modulo a Mersenne Prime. In order to 
implement fast transforms in digital computers, moduli m with simple binary rep- 
resentation are important for practical applications. Hence prime moduli of the 
form m = 2P - 1, where p is a rational prime, are studied very intensively (see [7, 
pp. 203-208], [11]). Such integers are called Mersenne primes. The corresponding 
CNT's are called complex Mersenne number transforms. Short proofs and some im- 
provements of results in [7, pp. 205-206] and [11] follow immediately from Theorem 
1. 
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THEOREM 5 ([11]). Let p be a rational prime, and let m = 2P-1 be a Mersenne 
prime. Further let e E Z[i], N(e) > 2. Under these assumptions, e is a primitive 
(M2 - 1)th root of unity modulo m if and only if N(e) is a primitive (m - 1)th root 
of unity modulo m, i.e., N(e) is a primitive root modulo m. 

Proof. (1) Let e = a+bi E Z[i], N(e) > 2. Since m is a rational prime _ 3mod4, 

the binomial formula and Fermat's theorem in Z imply 

(a + bi)m am + bmim a-bi mod m 

and hence 

(7) (a + bi)2P = (a + bi)m+l -= a2 + b2 N(e) mod m. 

(2) By 

mi2 _ 1 = 2P+1(2P-l - 1), m - 1 = 2(2P-1 - 1), 

the integers m2 - 1 and mr-1 have the same rational prime divisors Pi = 2, P2,.*.*, P. 

From (7) it follows that the condition 

em2-1 _ 1modm 

is equivalent to N(e)m- 1 mod m. Further, by (7), 

e(m2_1)/pk # 1 modm, k = 1,... 

is equivalent to 

N(e)(m-')/Pk 0 1 mod m, k = 1, S..*,s 

Since m is also a prime in Z[i], the assertion follows from Theorem 1,(2). o 

COROLLARY 4 ([11]). Let p be a rational prime, and let m = 2P - 1 be a 
Mersenne prime. Further let a = 2(P-1)/2 + 1 and b = 2(P-1)/2 -1. Then e = 
a + bi E Z[i] is a primitive (m2 - 1)th root of unity modulo m if and only if 3 is a 
primitive (m - 1)th root of unity modulo m, i.e., 3 is a primitive root modulo m. 

Proof. From Theorem 5 it follows that e = a + bi E Z[i] is a primitive (mi2 - 1)th 

root modulo m if and only if N(e) = a2 + b2 = m + 3 is a primitive (m - 1)th root 

of unity modulo m. This is valid if and only if 3 is a primitive root modulo m. 0 

THEOREM 6 ([7, p. 205]). Let p be a rational prime, and let m = 2P - 1 be 
a Mersenne prime. Further let n = 2k, 2 < k < p + 1, and let e E Z[i], N(e) > 2. 
Under these assumptions, e is a primitive nth root of unity modulo m if and only 
if en/2 =_ -1 mod m. 

Proof. By 

nlm2 -1 = 2P+1 (2P-1 - 1), 

the existence of primitive nth roots of unity modulo m is clear (see (2)). Applying 

Theorem 1,(1), the assertion follows from GCD(n, m) = 1 and 'In (e) = en/2 + 1 - 

Omodim. o 
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COROLLARY 5 ([7, pp. 205-206]). Let p > 2 be a rational prime, and let 
m = 2P - 1 be a Mersenne prime. Further, let a, b E Z with 

a-22P-2 modm, b-?(-3)2P2 modm 

be given. Then e = a + bi E Z[i] is a primitive (2P+1)th root of unity modulo m. 

Proof. By Theorem 1,(1) and by GCD(2, m) = 1, we have only to show that 

(8) (a + bi)2 + 1-=Omodm. 

(1) By the first step of the proof of Theorem 5, we have (7). By assumption, it 
follows that 

(9) a2 =22P modm, b2-(-3)2P modm. 

(2) Both 2 and -3 are quadratic residues modulo m = 2P - 1 (see [8, p. 136 and 
p. 144]). Then by Euler's criterion, we obtain 

1 = 2(m-1)/2 modm, 1 = (-3)(m-1)/2modm, 

i.e., 

(10) 2= 2(m+1)/2modm, -3 (-3)(m+l)/2modm 

with (m + 1)/2 = 2P-1. From (7), (9) and (10), there follows (8). 0 
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